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Abstract—Through the application of process mining, organisations can improve their business processes by leveraging data
recorded as a result of the performance of these processes. Over the past two decades, the field of process mining evolved
considerably, offering a rich collection of analysis techniques with different objectives and characteristics. Despite the advances in this
field, a solid statistical foundation is still lacking. Such a foundation would allow analysis outcomes to be found or judged using the
notion of statistical significance, thus providing a more objective way to assess these outcomes. This paper contributes several
statistical tests and association measures that treat process behaviour as a variable. The sensitivity of these tests to their parameters
is evaluated and their applicability is illustrated through the use of real-life event logs. The presented tests and measures constitute a

key contribution to a statistical foundation for process mining.
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1 INTRODUCTION

Organisations improve their business processes using
recorded historical behaviour: each case in the process —
a claim, order, shipment — traverses the process, and each
step — deciding, processing, packing — is recorded by an in-
formation system, from which an event log can be extracted
that describes this process behaviour. Process mining aims
to derive actionable insights from these event logs. Process
mining consists of a broad range of techniques, for instance
to automatically derive a process model from an event log
(process discovery), to compare a process model with an event
log for deviations (conformance checking) and to obtain global
or detailed process-based performance measures from pro-
cess models and event logs [1]. These techniques are often
applied sequentially by analysts to derive insights into
the business process. For instance, to derive performance
measures, first a process model is discovered, after which
its quality is verified using a conformance technique, after
which the performance measures can be computed.

Existing process mining techniques often work on a best-
effort basis. That is, very few existing techniques offer guar-
antees or have solid statistical foundations. Consequently,
results obtained from process mining techniques need to be
verified by analysts, which is complicated by the sequential
accumulation of weaknesses and complex interplay of the
techniques [1]]. Several approaches have been proposed to
address this. For instance, in medical research, statistical sig-
nificance of results is a necessity. Some techniques address
this problem for the performance of single activities [2].
However, to enable the application of process mining in
such fields, comprehensive statistical procedures that op-
erate on the behaviour of entire processes are necessary.

In this paper, we introduce statistical methods for pro-
cess mining. In particular, we introduce statistical tests
for process behaviour, and association measures to assess
relationships between process behaviour and trace data.

The methods of this paper enable several new types of
analyses and hypotheses, of which some examples are:
Ex1: From an event log, we have discovered two process
models using two different automated discovery techniques
that we want to compare. Which of the two process mod-
els best fits the log, and is there a statistically significant
difference in behaviour between the models? While existing
conformance checking techniques or benchmarks could an-
swer the first question, the measures they provide do not
bear statistical meaning [3]], [4].
Ex2: Several city councils are executing a similar process
that is prescribed by law, but implemented slightly differ-
ently in each city council [5]. We take a sample event log
of two city councils. Can we reject the null-hypothesis that
the event logs were derived from the same underlying un-
known model, and thus conclude that there are statistically
significant differences between the way the councils execute
the process?
Ex3: A company recognises several types of customers:
silver, gold and platinum. Is there a statistically significant
difference or relationship between the processing of these
types of customers?
Ex4: A company strategically aims to improve customer
satisfaction. Using data obtained from customer surveys, is
there a statistically significant difference in processing of sat-
isfied customers versus dissatisfied customers [6]], or is there
a relationship between the satisfaction of the customers
and the process followed? Is there a relationship between
conformance to the process and the overall duration?
Ex5: A company is optimising a business process and sev-
eral redesigned scenarios have been proposed, to preserve
the customer-focused behaviour as much as possible. Using
what-if analyses and simulation, these redesigns can be
evaluated, while a statistical test expresses the absence of
significant differences in the process of customer interac-
tions between the redesigned alternatives and the current
situation.



Ex6: Changing processes pose a challenge to process mining
techniques, as models, conformance information and perfor-
mance can only be reported on a single process [7]. Concept
drift detection splits an event log into sub-logs according to
process changes in the log.While [8] considers the stochastic
perspective of behaviour, that is, a drift point might be
related to how often parts of the process are executed,
ideally such a point should imply a statistically significant
difference between the processes before and after the point.

From these examples, two generic problems can be de-

rived. The first one covers and which
involve a decision on whether observed processes are dif-
ferent “enough”:
Problem statement #1: given two representations of two
processes (that is, logs and/or process models), what is the
probability that they were derived from the same underly-
ing process?

The second one covers and which involve
an assessment of the extent of a relation between process
behaviour and other data:

Problem statement #2: given a process and a trace attribute,
what is the association between the process and the at-
tribute?

Consequently, to address these problems and the motiva-
tional examples, we introduce several statistical tests and as-
sociation measures grounded in the bootstrap method, and
we provide their open-source implementation in the ProM
framework [9]. We evaluate the sensitivity of the introduced
methods to their varying parameters, and illustrate their
applicability on real-life logs.

The remainder of this paper is structured as follows.
Section [2] introduces existing concepts. Section [3| discusses
requirements for statistical tests in process mining and elab-
orates on why existing statistical methods cannot be used.
Section [4] introduces statistical tests, Section [f] introduces
association measures, Section [ evaluates the introduced
methods, Section [7] discusses related work, and Section
concludes the paper.

2 PRELIMINARIES

In this section, we introduce key concepts from process
mining and statistical methods.

2.1 Stochastic Languages & Models

An event represents the execution of a process step, and a
trace is a sequence of events, which represent the process
steps being executed for a particular case in a process.
A trace can be annotated with trace attributes, denoting
properties of the trace. Given an alphabet of process steps
(activities) ¥, T denotes the set of all possible traces over
Y. An event log is a collection of traces C 7. We refer
to the set of projections of traces onto their sequences
of activities as the set of trace variants. For instance, the
trace (a, b, c)2™°t=10 consists of three events and has one
attribute (amount).

Definition 1 (stochastic language). A stochastic language is a
function L that maps trace variants onto probabilities:

L: T — [0, 1] such that Z L(t)y=1
teT

2

In this paper, we assume that L is known and can be
queried L(t) to obtain the particular probability of a trace
t, as well as be queried for all traces for which a non-zero
probability is expressed: L(L) = {¢ | L(t) > 0}. An (in)finite
stochastic language L has an (un)bounded number of traces
L(L).

An event log expresses a finite stochastic language,
which can be obtained by dividing the occurrence of each
trace variant by the total number of traces in the event
log. Thus, the techniques proposed in this paper can be
applied to any standard event log. Please note that support
for event logs with lifecycle information depends on the
chosen trace and process distance functions ¢ and A; EMSC
supports lifecycle information implicitly, if it is contained in
the activity notion.

A stochastic process model expresses a possibly infinite
stochastic language, typically in human-readable form. Sev-
eral stochastic process modelling formalisms have been pro-
posed, such as Stochastic Petri Nets, Generalised Stochastic
Petri Nets, and Generalised Stochastic Labelled Petri nets;
a detailed introduction of these formalisms is beyond the
scope of this paper. Please note that the techniques pre-
sented in this paper are defined over stochastic languages
of stochastic process models — time and other additional
modelled information is ignored — and are therefore flexible
in the stochastic modelling formalisms that can be used.

2.2 Process & Trace Distances

The Levenshtein distance expresses the minimum number of
edit operations (remove event, add event, substitute event)
to transform one trace into another [10]. The normalised
Levenshtein distance is the Levenshtein distance divided by
the length of the longest of the two traces, and is a number
between 0 and 1.

The Earth Movers” Stochastic Conformance (EMSC) tech-
nique measures a normalised distance between two stochas-
tic languages, that is, between any combination of event
logs and stochastic models [11]. To this end, a minimum-
cost reallocation matrix is computed that transforms the first
stochastic language into the second. Process models with
loops are sampled. The cost of this matrix € [0, 1] is the
distance between the stochastic languages.

2.3 Statistical Methods

Covariance. The covariance of two numerical variables ex-
presses the direction of a relationship between the two
variables: a positive covariance indicates that the larger
values of one variable correspond to the larger values of the
other variable, while a negative covariance indicates that
the lower values of one variable correspond to the higher
values of the other variable. For two random variables
X and Y, covariance can be computed as: cov(X,Y) =
B((X - X)(Y - V).

Bootstrap. Suppose we are interested in some property
0 = s(z) for some function s, where # ~ F(z), F(z) is
an unknown distribution function, and = = (z1,...,%y).
In such cases, the sampling distribution of § is unknown,
so finding, for example, the distribution of 0 poses some
difficulties. Fortunately, the bootstrap method can be used to
form an approximation to this sampling distribution, thus
allowing inference to be performed [12].



The bootstrap method was proposed as the basis for
some of the methods in this paper as it is a general approach
for approximating (bootstrap) the sampling distribution of
a given statistic without assuming a parametric form for
the distribution of the data. This is particularly useful when
analysing, for example, distances as they are generally non-
negative and can be highly skewed, meaning that assuming
normality is not appropriate. Having the sampling distribu-
tion of a given statistic readily available means (bootstrap)
confidence intervals can be formed straightforwardly, which
provides an assessment of uncertainty, and can be used to
draw inference about the population value.

To construct an approximation to the probability distri-
bution F'(z), place probability mass of 1/n at each point of
x. Denote this as F'(z); a non-parametric estimate of F'(z).
With F(z) fixed, draw a random sample of size n with
replacement from F(z) i.e. ®) ~ F(z). This is called the
bootstrap sample. Based on this sample, ) = s(z()) can be
evaluated, and this is known as a sample from the bootstrap
distribution of 6, which forms an approximation to the
sampling distribution of f. Thus, one can then approximate
the sampling distribution of 4 by drawing many samples (of
size n) from F(z) and evaluating s(z(®)) for each sample.
The collection of these draws is known as the bootstrap
distribution. Algorithm|T|provides pseudo code for drawing
from the bootstrap distribution.

Algorithm 1 One-sample bootstrap algorithm

1: Initialise x, s(z), F'(x)

2: forbe [1: Bl do

3: Sample (%) ~
probability 1/n

4 Evaluate 00 = s(2®)

F(z) of size n with replacement with

5: end for .
6: Approximate sampling distribution of 6 with
(60, )

x? test Given two categorical variables, the x? (e.g.
Pearson [13]]) test establishes whether there is a statistically
significant difference between frequency distributions of the
values of the two categorical variables. That is, whether the
distribution of values of one variable differs from the value
of the other variable. The Pearson test assumes that both
variables are normally distributed and independent. Let k&
be the number of categories (in our case: number of trace
variants); n the number of observations (in our case: number
of traces in the log); x; the number of times ¢ was observed
(in our case: number of times a trace variant (¢) is in the
log); p; the probability of trace variant (¢) in the model; and
m; = np; number of traces of a trace variant (¢) expected in

the draw. Then, 2 = % | M =yr, :i
observations on this test are that (1) if 3z; = 0 (in our case:
if a model does not support a trace), then there is a division
by zero, and (2) if the language of the model is infinite, then
m; — 0, which violates the test assumption that all traces
are sufficiently often seen.

Simulation-based approaches. Simulation can also be used
to assess whether a model could have generated some given
data by assessing the closeness of generated data to some

@ sample | ——/| discover
_— - >
Process Event log Stochastic model
T describes

Fig. 1: Context of process mining.

given observed data. An example of such an approach is
approximate Bayesian computation which aims to find a
posterior distribution based on samples of parameters that
yield simulated data that are close to the initial sample [14].
Such methods can also be used to compare models, i.e.
determine which model is more likely to generate data that
are close to the observed data. In this paper, we use this
approach as the basis for choosing between different logs,
i.e. to determine which log is more likely to have generated
a given trace.

3 CONTEXT & REQUIREMENTS FOR PROCESS-
BASED STATISTICAL METHODS

In this section, we sketch the context of process mining, de-
fine the problem we are addressing, gather requirements for
process-based statistical techniques, and show that typical
statistical techniques do not satisfy these requirements.

As illustrated in Figure [1} the process is executed in an
organisation. A process is unknown, but a sample of traces,
an event log, can typically be extracted from information sys-
tems that support the process. Using an event log, process
mining techniques can automatically discover a stochastic
process model [15], which aims to describe the process well
and to be interpretable by human analysts.

The input of a process-based statistical test is either (i)
two event logs, (ii) a stochastic process model and an event
log, or (iii) two stochastic process models, where the output
of a process-based statistical test is a likelihood that the two
stochastic languages are derived from the same underlying
and unknown business process. The input of a process-
based correlation measure is an event log, in which the
traces have been annotated with an attribute.

Process-based tests and correlation measures inherently
differ from standard statistical methods; as such, we have
identified the following requirements.

Reql: Process-based statistical methods that support stochastic
process models should support infinite behaviour, as any process
model with a loop contains an infinite number of trace variants.

This limits the applicability of standard statistical tech-
niques, as categorical data is typically not assumed to be
infinite. Some measures, such as EMSC [11], can, in some
cases, be computed algebraically, however this challenges
the practical applicability of these measures.

Req2: Process-based statistical methods should be forgiving
against non-occurring behaviour.

In process mining, it is desirable that models do not
include infrequent behaviour: human analysts interpret the
models, so simplicity is an important quality dimension.
Consequently, it is likely for a log L and a model M that
for some ¢ € L it holds that M (¢) = 0.



TABLE 1: Illustrations of requirements for process-based
statistical methods.

(a) Methods should be forgiving towards non-occurring be-

haviour (Req?2).

trace L My Mo
(a,b) 1000 1 0.01
(c) 1 0 099

(b) Trace distance should be taken into account (Req3).

trace L My Mo

(a,b,c,d,e, f) 10 0 0
(a,b,c,dye,g) 0 099 0.01
{a) 0 001 099

For instance, the example shown in Table contains a
log L and two models M; M, such that L contains a trace
(c) that is not supported by model M;, but is supported
by M, with a high probability. In this example, we argue
that M, is a more likely explanation for L than M>, despite
this one trace (c). In other words: M, is preferred over M,
because data generated from M; will be more similar to L
than data generated from M.

Standard statistical tests would consider that L has no
chance of being derived from M, as it contains an observa-
tion ({(c)) that is not in M;. Consequently, these tests would
return 0 or be undefined, and thus not yield information.
Req3: Process-based statistical tests should take distances be-
tween traces into account.

Process mining aims to analyse the behaviour logged
in an event log. In many real-life processes, deviations or
exceptions may occur. However, such a deviating event
entails only a small portion of all steps executed in a trace,
thus it would be a waste of information to disqualify an
entire trace just for a single deviating event to, e.g., measure
performance or frequencies of the “correct” parts of the
trace. Therefore, state-of-the-art process mining techniques
perform approximate matching using distance measures
between traces.

For instance, consider the example shown in Table
consisting of a log L and two models M; and M,. The
trace (a,b,c,d, e, f) € L does not appear in M; or M. For
this example, we would argue that L is more likely to be
derived from M; than from My, as the trace (a,b, ¢, d, e, f)
is arguably closer to the trace (a,b, ¢, d, e, g) than to the trace
().

Standard statistical tests would consider that L has no
chance of being derived from either M; or M», as it contains
an observation ({(a,b,c,d,e, f)) that is not in M; or M.
Consequently, these tests would return 0, or be undefined,
rather than considering what the most likely model for L is.
Req4: If a process-based statistical test has a parameter s
indicating the resample size or n indicating the number of rep-
etitions, then the test should be deterministic and converge to the
deterministic correct answer for s — oo and n — oo.

In the tests and measures introduced in the remainder
of this paper, two auxiliary measures might be used: a lan-
guage distance measure and a trace distance measure. The
introduced tests and measures are agnostic to these auxiliary
measures, though some pose additional requirements.

For the trace distance measure, we choose the nor-

TABLE 2: Overview of tests.

unknown known process

process
log model
2 processes (log/log) P-P-UP  P-P-L P-P-L
2 processes (log/model) P-P-UP  P-P-L P-P-L
2 processes (model/model) P-P-UP  P-P-L P-P-L
multiple processes (log/categorical ~L-CA - -

trace attribute)

malised Levenshtein distance: it matches intuition of in-
sertion and deletion, is normalised, and is relatively fast
to compute. Alternatives include a strict equivalence test
(which would not satisfy [Req3), or any other string edit
distance function, which could even take other attributes
(such as cost or time) into account, or partial orders and
concurrency. As such, the techniques presented in this paper
constitute frameworks, that can be instantiated with other
such functions and henceforth may possess different prop-
erties. A detailed study of these properties is beyond the
scope of this paper.

For the language distance measure, we choose EMSC: it
is one of the few measures that takes the frequency of be-
haviour of both languages into account, which is necessary
to satisfy Currently, the only other alternative would
be Entropy-based stochastic fitness and precision [16], how-
ever due to its dual nature would introduce unwanted
asymmetry in the tests and measures.

4 STATISTICAL TESTS

In this section, we introduce statistical tests for process
behaviour; Tableprovides an overview. First, there’s a dis-
tinction between whether the underlying process is known
(horizontal direction in Table [2). If the underlying process is
unknown, a test establishes whether logs or models could
have been derived from the same unknown underlying
process. If the underlying process is known (and given in
the shape of a log or a model), a test establishes which of
two given logs or models is closest to the known underlying
process. In the vertical direction, there are various combina-
tions in which the processes can be provided. Please note
that even though most of our tests apply to any combination
of logs and models, this is due to the construction of these
tests and not inherent. Comparing multiple processes to a
known process remains future work.

In the remainder of this section, we discuss the three
tests.

4.1 Process vs. Process - Unknown Process Test

Given two logs or process models P, and P,, we would like
to establish whether the logs show significantly different be-
haviour. For instance, P; could represent satisfied customers
while P, could represent dissatisfied customers, and we
would like to know whether there is a significant difference
in the process of serving these groups of customers.
Hypothesis: P, and Py were derived from the same underlying
(unknown) process.

To test this hypothesis, we evaluate how likely P, is
if we assume the model is P;. To do so, we apply the
bootstrap method to approximate the sampling distribution
of distances of logs generated under the model given by P,



then determine how likely P, (or a more extreme log) would
be observed under this model.

That is, we repeatedly take resamples from P; and
compare these resamples with P, using a process distance
measure A. Next, we compare P, with P, using A, and if
this distance is higher than 1 — « of the sample distances, we
reject the hypothesis. For instance, for a = 0.05, at least 95%
of the P, resamples need to have a smaller distance to P,
than P, to reject the hypothesis. Algorithm [4.1] formalises
this procedure.

Algorithm 2 Log vs. Log - Unknown Process Test

function P-P-UP TEST(Process P, P, process difference
A, repetitions n, threshold «)
D« ]
for n times do
P| + random sample of P of size |s| with replace-
ment
D+ DWYI[A(Py, P])]
end for
p+|[d|de DAd<A(P,Py)]n
if p > 1 — «a then
reject hypothesis
else
do not reject hypothesis
end if
end function

For this test, requirements[Req2|and [Req3|are satisfied if
A satisfies them. The test supports infinite behaviour (Req1)

if A is able to perform log-log, log-model and model-model
comparisons where appropriate.

If EMSC is used for A, then the run time complexity of
Algorithm is linear in n, quadratic in the maximum trace
length and polynomial in the number of trace variants.

If P, is a log, then the resample size s is fixed at |L4]
by the bootstrap method. However, if P; is a model, the
resample size must be chosen carefully, as the resample
size determines the extent to which the test can determine
a difference. Big differences should be easy to detect and
relatively small resample sizes would suffice, while minor
differences would require larger resample sizes to detect the
differences. In Section we demonstrate an application
of this test, while in Section [6.2.1} we study the behaviour of
this test under different resample sizes.

4.1.1 Further applications

The same test can be applied to model-model settings as
well: if we are given two models M; and Ms, and we
would like to establish whether these models describe sig-
nificantly different behaviour. For instance, both an as-is
process model and a proposed to-be redesign are provided,
abstracted to the most important customer interactions. We
would like to know whether there are significant customer-
facing changes. Notice that language-equivalence establish-
ing algorithms cannot provide this information.
Hypothesis: M; and My describe equivalent stochastic be-
haviour.

Given a process distance measure A, one could mea-
sure the distance between M; and M, directly, and use a
threshold on the measure to reject or sustain the hypothesis.
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However, this requires (1) A to satisfy (forgiving to
absent behaviour) and (considering trace distance); (2)
A to fully support infinite behaviour (Reql); (3) A to be
consistent over different types of differences: the weighing
of types of differences directly influences the result; and (4)
A to provide well-defined semantics over small differences
such that a well-defined threshold can be chosen, e.g., a
difference of 0.05 vs. 0.04 might be important. Even then,
statistical significance could not be concluded. To the best
of our knowledge, no such A exists. Instead, the test can be
conducted to test whether M7 and M5 describe a different
process. Such a test satisfies [Reql] [Req2| and [Req3] if A
satisfies these requirements. Please note that apart from con-
sistency, the actual values returned by A are unimportant,
as the test only compares values of A with one another.

4.2 Process vs. Process - Log Test

Given an event log L and two processes P;, P, we would
like to establish whether there is a significant difference in
how well the processes represent the event log. For instance,
two process discovery techniques were applied to a given
event log, and we would like to establish which of the two
models is the preferred model, that is, represents the log
better than the other.

Hypothesis: P; and P, represent L equally well. Alternative
hypothesis: P; represents L better. Alternative hypothesis:
Mp represents L better.

Given a process distance measure A, one could measure
the distances A(L, P;) and A(L, P,) directly, and choose the
least distance with some threshold. However, similar to the
reasons mentioned in Section such a A does not exist
currently and would not provide statistical significance.

To test this hypothesis, we apply the Approximate
Bayesian Computation method [14, Alg. B], where we re-
peatedly perform an experiment of taking a sample from
both processes, and accepting the experiment if the sample
of P; is closer to L than the sample of P, according to a
process distance function A. If one of the processes wins
this comparison often enough, based on a threshold ¢,
this provides evidence of statistically significant differences.
Algorithm [3| provides a formal algorithm.

This procedure satisfies [Req2] and if A satisfies
these requirements, satisfies [Reql} and requires a suitable
sample size to be chosen. For s — oo, p tends to 0 or 1
yielding the correct answer, while for n — oo, p will stabilise
(Reg4).

4.3 Log vs. Categorical Attribute Test

Given an event log L, in which the traces are annotated with
a categorical attribute ¢, we would like to establish whether
the sub-logs defined by the attribute were derived from
different processes. For instance, an event log was derived
from a traffic fine collections process, and we would like to
establish whether the process is different for different types
of traffic violations.

Hypothesis: the sub-logs defined by  are derived from identical
processes.

To test this hypothesis, we apply the bootstrap method
to establish whether knowledge of ¢ decreases the average
trace distance. That is, whether the average trace distance
with knowledge of ¢ — thus only for traces with the same



Algorithm 3 Process vs. Process - Log Test

function P-P-L TEST(Log L, Process Py, P, sample size
s, repetitions n, process difference A, threshold «)
a<+0
for n times do
Ly < random sample of P; of size s with replace-
ment
Ly < random sample of P, of size s with replace-
ment
if A(L,L1) < A(L,Ly) then a < a + 1 end if
end for
p <+ a/n
if p < 0.5« then
reject null hypothesis; P represents L better
elseif p > 1 — 0.5« then
reject null hypothesis; P; represents L better
else
do not reject null hypothesis
end if
end function

value for ¢ — is lower than the average trace distance with-
out knowledge of ¢, according to a trace distance measure
d.

Intuitively, we take n bootstrap samples of L, and mea-
sure the average trace distance in the sample between (r) all
traces, and (a) all traces with equivalent ¢. If a is smaller
than r, we have seen evidence against the null hypothesis,
and we record this in e. If there is enough evidence, we reject
the null hypothesis. For practical feasibility — the method is
quadratic in the size of the resample — we parameterise the
test with resample size s.

Formally, let L C R be a collection of traces, let ¢: R —
A be a categorical attribute of the traces in L — we assume
that all traces have this attribute —and let 6: R x R — R
be a trace distance function, then Algorithm [ shows the
computation.

If a yields an empty domain, the sample is discarded.
If all samples are discarded, then the test is undefined. To
avoid a bias in the average, a drawn trace is not compared
with itself, unless drawn multiple times.

Algorithm 4 Log vs. Categorical Attribute Test

function L-CA TEST(Log L, attribute ¢, trace difference
d, repetitions n)
e+ 0
for n times do
L' = (t;...ts) < random sample of L of size |L|
with replacement
a < avgld(ti, t;) | ti,t; € L'Ai # jAg(ti) = o(t;)]
T an[(S(ti,tj) ‘ ti,t; € L'Ni# j]
ifa <rthene <« e+ 1endif
end for
if 1 —e/n < a then
reject null hypothesis: at least one value of A
associates with a difference in process
else
do not reject null hypothesis
end if
end function

TABLE 3: Overview of associations.

Associations numerical categorical
trace trace
attribute attribute

process behaviour (log) P-NA (5.1) P-CA (5.2)

process conformance (log & model)  C-NA (5.3) C-NA (5.3)

For this procedure, (infinite behaviour support)
is irrelevant. The procedure satisfies and if ¢

considers events in the traces. For n — oo and s — 00, the

measure 1 — e/n will stabilise (Reqd).
5 ASSOCIATION MEASURES

Association measures describe the relationship between the
behaviour of traces in a log and other data annotated to the
traces. Notice that correlation is a special kind of association
(linear). As summarised in Table[8] we introduce association
measures to describe the relation between process behaviour
or process conformance vs. numerical or categorical trace
attributes. As standard process models do not emit trace
attributes, only processes described in logs are considered.

5.1 Process vs. Numerical Attribute Association

In this section, we introduce an association technique be-
tween behaviour in an event log and a numerical trace
attribute:

Process loan amount
(h) 30000
(h, 1) 70000
(h,1) 100000
(h, ) 90000

For instance: what is the dependence between the requested
loan amount and the process followed? Should a model of
the process take the requested loan amount into account?
Does a model that includes the loan amount explain signif-
icantly more variability than a model that does not include
the loan amount?

We aim to measure association. However, as traces have
neither an inherent order nor an expected value or mean,
we cannot measure association directly. Noting that cor-
relation is covariance normalised with variance, we aim
to measure the covariance of two variables X and Y, of
which Y cannot be numerically observed. Instead, we use
the following derivation, which shows that we can also take
the covariance of the difference between pairs of measures,
in which X; and X; denote copies of X (similar for Y):

cov(AX,AY) = cov(X; — X;,Y; - Y))
= cov(X;,Y;) + cov(X,,Y;)
— cov(X:, ¥j) - cov(X;, Yi)
= 2cov(X,, ) M)

To compute (I), one could take all pairs of traces of
the log, and measures the distance between these traces
of (1) the chosen numerical trace attribute ¢ and (2) their
described process paths using a trace distance function
0. There are w of such trace pairs. However, for
larger real-life logs this is infeasible, and, as we will show



in Section considering all possible pairs may not be
necessary to get a close approximation of the measure.

Therefore, our measure takes a randomly chosen trace
pair n times, and from the measured difference tuples, a
standard association plot and measure (such as correlation)
can be computed. Notice that this procedure assumes that
all traces have been annotated with trace attribute ¢; the
implementation removes traces without ¢.

Formally, let L C R be a collection of traces, let
¢: R — R denote a numerical attribute of the traces in
L - we assume that all traces have this attribute — and
let 6: R Xx R — R be a trace distance function. Then,
Algorithm [5| shows the computation.

Algorithm 5 Process-Numerical Attribute Association

function P-NA ASSOCIATION(traces L, attribute ¢, repe-
titions n)
m <+ maxer, p(t)
for n times do
t, < random trace of L
tp, <+ random trace of L

dy = lp(ta)/m — o(ty)/m]

ds = 5(ta, tb)
record (d,, ds)
end for

return plot or correlation measure of recorded tuples
end function

Figure [10| shows several examples of correlation density
plots, and in Section we discuss their application to
real-life event logs.

Variable d, is normalised by our method; if ds is chosen
to be normalised (e.g. normalised Levenshtein), then all
recorded tuples will be € [0,1] x [0, 1], and thus standard
correlation measures can be used without further normali-
sation.

For this measure, as event logs are inherently finite,
infinite behaviour is irrelevant and does not apply.
Requirements and are satisfied if the trace
distance function ¢ satisfies these requirements. For n — oo,
the method converges to the correct value as if all pairs of
traces had been taken (Regd).

5.2 Process vs. Categorical Attribute Association

In this section, we introduce an association measure be-
tween behaviour in an event log and a categorical trace
attribute ¢: 7 — A, where A is the set of possible values
of the attribute. For instance: assume that every trace is an-
notated with the level of customer that the trace represents.
Then, what is the relationship between the level of customer
(silver, gold, platinum) and process behaviour?

If we consider the traces belonging to each customer
level as a separate sub-log, we obtain three stochastic lan-
guages:

silver gold platinum full log

(h) 30 20 10 60
h, i) 50 30 4 84
(h, j) 15 25 0 40

7

A standard correlation measure such as x? could then
be applied as the log, and the set of values of ¢ are finite,
however that would not capture the similarity between
traces and would not be defined if any trace does
not appear for an attribute value (Req2).

To the best of our knowledge, association measures for
categorical-numerical variable combinations have not been
defined, thus a distance-based version like in our P-NA
association measure (Section would not be possible.
Instead, we use a proxy for the desired association measure,
by measuring the correlation between the average trace
distance with knowledge of ¢ vs. without knowledge of
. That is, the average trace distance for traces that have
equal ¢ (a) vs. the average trace distance for all traces (r).
The standard correlation between the normalised a and r
is 1 when they coincide and 0 if they are unrelated. As we
aim to express the opposite — 1 means that ¢ determines the
process completely — we reverse the standard correlation
by taking 1 - the standard correlation (negative correlations
cannot occur).

To obtain a correlation between a and r, we apply the
bootstrap method: n samples are taken, and for each an
a and an 7 is computed. Special cases such as an empty
domain for a are handled in the implementation. As this
measure is quadratic in the size of the sample, which for
the bootstrap method is the number of traces in the log, we
parameterise the resample size s.

Formally, let L C R be a collection of traces, let
¢: R — A denote a categorical attribute of the traces in
L - we assume that all traces have this attribute — and
let 6: R x R — R be a trace distance function. Then,
Algorithm [6] shows the computation.

Algorithm 6 Process-Categorical Attribute Association

function P-CA ASSOCIATION(Process P, attribute ¢,
trace difference §, repetitions n)
for n times do
L’ < random sample of P of size |L| with replace-

ment
a < avg[o(t,t') [ t,t' € L' Np(t) = o(t')]
r<—avgl[d(t,t') | ¢, € L'
report (a,r)
end for
return plot or 1 - correlation measure of recorded
tuples

end function

For this association measure, infinite behaviour is irrel-
evant, as event logs are inherently finite, thus does
not apply. applies by sampling and is satisfied if
the trace distance function ¢ takes events into account. As
for[Req4} the method stabilises with n — oo and s — oc.

The run time complexity is O(n|L|d); if normalised Lev-
enshtein is used for §, then the run time is O(nsl?), where |
is the maximum trace length.

The P-CA association measures can also be used to
describe the association between several process models
M; ... M,, by annotating all behaviour of model M, with
 being 1.



5.3 Conformance vs. Numerical Attribute Association

In this section, we introduce an association measure be-
tween the conformance of traces in an event log with
respect to a process model and a numerical trace attribute
@: T — R. For instance: assume that every trace is anno-
tated with the claim amount that the trace represents. Then,
what is the relationship between the claim amount and the
conformance of the trace?

Formally, let L C R be a collection of traces, let
p: R — R denote a numerical attribute of the traces in
L — we assume that all traces have this attribute — and let
M C R be a process model and let §: R x R* — Rbe a
trace-model distance function. Then, Algorithm[7]shows the
computation.

Algorithm 7 Conformance-Numerical Attribute Association

function C-NA ASSOCIATION(log L, attribute ¢, model
M, distance function §, number of samples n)
for n times do
t + random trace from L
record (¢(t),0(t, M))
end for
return plot or association measure of recorded tuples
end function

An example of a trace-model distance function 6 is trace-
fitness of alignments, which returns a number between 0,
indicating the trace does not fit the model at all, and 1, indi-
cating the trace is fully represented by the model [17]. Notice
that this measure does not take the stochastic perspective of
the model into account.

The C-NA association measure can also be applied to
categorical attributes, which will result in a list of numerical-
categorical tuples, which can be compared using e.g. a
Kruskal-Wallis test.

The association could be computed without sampling,
as there are a finite number of traces to compute. However,
alignments are exponential in the length of the traces, and
a close approximation of the association measure might be
obtained from a sample.

6 EVALUATION

In this section, we evaluate the techniques introduced in this
paper by (1) describing their implementation, (2) evaluating
the influence of parameters, feasibility and validity, and (3)
demonstrating their applicability on example applications.

6.1 Implementation

The methods introduced in this paper have been imple-
mented as plug-ins of the ProM framework [9ﬂ A single
plug-in (“Compute association/correlation between the pro-
cess and trace attributes”) computes the association for each
appropriate attribute (P-CA & P-NA association) in the log
and visualises the results. The statistical tests each have their
own plug-in. Additionally, “Log vs. categorical attribute test
(pairwise comparison)” applies a P-P-UP test to each pair of
sub-logs defined by a categorical attribute value; the results
are corrected for the multiple tests being performed using
the Benjamini-Hochberg method [18] (see Figure[2).

1. The source code of the plug-ins is available at https:/ /svn.win.tue.
nl/repos/prom/Packages /Statistical Tests!

ProM UlTopia

attribute correlation

1
ID

A trace
%

amount numeric 0.0652054447

article numeric 5.619382E-4

ProM UlTopia

result
Reject hypothesis that sub-log was derived from |«
the same underlying process as the remainder of
the log.
R 1.000000 [Traces with vehicleClass = "R’ are from a =
statistically significantly different underlying
process than the other traces of the log, with a
= 0.05. 1
Reject hypothesis that sub-log was derived fram
the same underlying process as the remainder of
the log.
M 1.000000 [Traces with vehicleClass = "M" are from a
statistically significantly different underlying
process than the other traces of the log, with o ||
= 0,05 =

vehicleClass

p-value

Fig. 2: Plug-ins in ProM: associations and log-categorical
pairwise test.

In these implementations, the sample measures are
parallelised, and sampling is sped up using the Alias
method [19] and memory techniques: a sample is an array
of double-precision numbers representing the likelihood of
the trace variants.

As the trace distance function §, we use the normalised
Levenshtein distance, while as the process distance function
A, we used the Earth Movers’ Stochastic Conformance
(EMSC) measure [20]. To the best of our knowledge, EMSC
is currently the only measure of stochastic behavioural
difference that is (1) symmetric, (2) considers trace distance
using Levenshtein (Req3), and (3) penalises non-occurring
behaviour moderately (Req2). EMSC does not support infi-
nite behaviour; instead, it unfolds loops in process models
up to a user-chosen threshold. Still, is satisfied by the
statistical methods in this paper.

6.2 Parameters, Feasibility & Validation

In this section, we evaluate the sensitivity of our methods to
their parameters, assess their feasibility on real-life logs and
validate their results. All experiments were performed once
on a range of standard computers (unless indicated other-
wise), and thus can only show general feasibility trends.
We used 8 real-life publicly available event logs of the
IEEE task force on process miningﬁ For each log, we chose

2. https:/ /data.4tu.nl/search?q=:keyword:
IEEETaskForceonProcessMining
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TABLE 4: Adjusted logs.

Log  Probabilities

LL Log itself: Vier, LL(t) = L(t).

TE Average two least-occurring trace variants: ¢ least-occurring
trace, t’ second-least-occurring trace, such that L(t) < L(t').
Then TE(t) = |(L(¢t) + L(t'))/2] and TE(t') = [(L(t) +
L(t'))/2].

TS Swap two least-occurring trace variants: t least-occurring
trace, t’ second-least-occurring trace, such that L(t) < L(t).
Then TS(¢t) = L(¥') and TS(t') = L(¢).

MS  Swap two most-occurring trace variants: ¢ most-occurring
trace, ¢’ second-most-occurring trace, such that L(t) > L(¢').
Then MS(t) = L(t') and MS(t') = L(t).

LE All trace variants having the same probability:

VeversLE(t) = LE(t).

an example numerical attribute as to obtain a mix of contin-
uous, discrete and date typed attributes. Furthermore, for
each log that had categorical trace attributes (6/8) we chose
such an attribute to likely have an influence on the followed
process (just as an analyst would select these using domain
knowledge). One of the eight logs (BPIC15_merged) was
derived by including all traces from five BPIC15 logs, where
an artificial categorical trace attribute indicating the log the
trace came from.

6.2.1 P-P-UP Test: resample size

For our logs, the resample size of the Process vs. Process
- Unknown Process test (P-P-UP, Section is fixed by
the bootstrap method. Nevertheless, in this section, we
make this resample size a parameter (s) and evaluate the
sensitivity of the P-P-UP test to the resample size. To this
end, we apply the test to combinations of real-life event logs
and slightly adjusted synthetic copies of these logs, with
exponentially increasing resample size s. These adjusted
logs are summarised in Table 4]

Figure 3{shows the results; BPIC15_merged, BPIC17 and
BPIC19 could not be obtained due to the application of
EMSC taking more than 1000 hours on 100 CPUs. Other
stochastic language difference functions (A) may address
this. Intuitively, the test compares the differences of log Lo
and resamples of L1 to Li: the test is sensitive to differences
that are “larger” than the differences introduced by re-
sampling. Hence, given a large enough resample size, it is
sensitive to any difference. The results confirm that very
small differences in TS become significant only at s = 107
for BPIC12-a, even though this log has only 17 trace variants.
Other logs show similar patterns: with increasing s, first LE
becomes significant, followed by MS, TS and TE, as would
be expected from the construction of these adjusted logs.
For some logs, the 10° samples we used was not sufficient
to distinguish all adjusted logs. We observe that this test did
not falsely classify equal logs as non-equal, which indicates
a very low chance of type-1 errors. We conjecture that type-2
errors can be avoided by taking a large enough sample size,
which for some logs might exceed 10°.

We conclude that the P-P-UP test is sensitive to the
resample size, which confirms the design decision to stick
with the standard resample size suggested by the bootstrap
method.

101 104 107 101 104 107
(a) Road fines. (b) BPIC11.

1 A T - le—Fr=—=== I = =
0.8 0.8 |- =
0.6 0.6 |- =
0.4 0.4 |- =
0.2 0.2 |- =

0 Ol ————+ ‘

10t 104 107 10t 104 107

(c) BPIC12-a. (d) BPIC15_merged.

lF=F=—=== = [l S mpp———— F-—--=- S
0.8 0.8 |- -
0.6 0.6 |- -
0.4 0.4 | |
0.2 0.2 | |

0 om—! ‘ ‘

101 104 107 101 104 107
(e) BPIC15_1. (f) BPIC17.

[l Sy mpp———— F-—--=- S 1
0.8 — 0.8
0.6 — 0.6
0.4 - 0.4
0.2 - 0.2

0 ‘ ‘ 0

10t 104 107 10t 104 107
(g) BPIC19. (h) BPIC20-d.

|+LL+TE+TS+MS+LE |

Fig. 3: Sensitivity of the P-P-UP test. Vertical: p-value; hor-
izontal: resample size; n = 10000. Dashed line: o« = 0.05.
Dotted line: number of traces in the log.

6.2.2 P-P-L test

In this section, we evaluate the sensitivity of the P-P-L
test to its parameters the number of samples (n) and the
sample size (s). We vary both from 100 to 1000. For the
most realistic scenario, we needed quite similar but slightly
different stochastic processes, for which we used a process
model discovered by the Directly Follows Model Miner [21],
with a noise parameter setting of 0.5 and 0.6, annotated to
a stochastic model by the Frequency Estimator [22]. As the
P-P-L test heavily uses a language-difference function A,
using EMSC was not an option. Instead, we opted for the
uEMSC variant [11], which does not consider differences
between traces (i.e. traces are either equivalent or different),

which does not satisfy

The results are shown in Figure 4} Results could not be
obtained for BPIC11 (some) and BPIC15_merged (all except
one), due to the size of the models: it can require 891 000
steps to traverse the model of BPIC11 before an end state
is reached, for instance. Maximum run time varied from 7
seconds (Road fines) to 18 hours (BPIC11). As the critical
values of the test are at 0.025 and 0.975 for o = 0.05, most
of the logs seem stable (even BPIC15_merged), with the
exception of BPIC11, which clearly needs a higher sample
size s before potentially stabilising (the value at s = 900,
n = 900 is 0.79).
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Fig. 4: Sensitivity of the P-P-L test to its parameters.

6.2.3 L-CA test

The Log-Categorical Attribute test (L-CA test) has one pa-
rameter: the number of repetitions n. Here, we evaluate the
sensitivity of the L-CA test to n by varying n from 100
to 1500 on our logs that have categorical trace attributes.
Furthermore, the L-CA test contains a sampling step of the
input log L with size |L|, as is the default in the bootstrap
method. To test the sensitivity of the L-CA test to the size of
the input log, we vary this sampling size similarly.

The results are shown in Figure |5| The Road fines log
starst wiggly but stabilises quickly at 0.86, which is well
above any typically used «, thus the test suggests that
there is no association between the vehicle class and the
followed process. We confirmed this with a domain expert,
and performed a manual analysis, which showed that out of
the 4 such classes, 3 indeed have largely similar processes.
However, the last class (“R”) has a difference in process
compared to the other classes: for the R class, the fine is
never paid but always sent, while for the other vehicle
classes around 33% of the fines is paid and not sent. The
L-CA test is insensitive to this difference as there are only 4
traces with with vehicleClass R, out of 150 370 traces in total,
due to sampling the test performs. Thus, the L-CA test may
be sensitive to the balancedness of the categorical attribute.

For BPIC17, the metric stabilises on 0 at |L| = 500, and
for the 4 remaining logs, the test metric is never above 0 (in
double precision). For these last 5 logs, independence has
been disproven for any value of o: at least one value of the
categorical attribute associates with a difference in process.

The feasibility is illustrated by the maximum run time of

a single test on a 10-year old laptop ranging from 12 minutes
(Road fines) to around 5 hours (BPIC11).
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Fig. 5: Sensitivity of the L-CA test.

6.2.4 P-NA association

In order to evaluate the sensitivity of the Process vs. Nu-
merical Attribute association measure (P-NA association),
we performed an experiment on our real-life logs and their
numerical attributes. We varied the number of repetitions n
from 10000 to 1000 000.

Figure [f| shows the results. It is clear that the number of
samples does not influence the result much: the Road fines
log, having 150370 traces, stabilises last, but stabilises on
two decimals at just 40 000 samples. Nevertheless, sampling
is very fast and, after log loading, 1000000 samples were
obtained in at most 25 seconds (BPIC11), but typically in less
than a second (BPIC12, Road fines) on a standard laptop.
Anecdotally: filtering the traces not having the numerical
attribute was the most time-consuming step. Thus, we argue
that an n of 1000 000 suffices for the real-life logs considered
here, thus we recommend this n for standard-sized event
logs. If more certainty is necessary, the experiment could be
repeated a few times.

6.2.5 P-CA association

The P-CA association measure has one parameter: the num-
ber of repetitions n; we test the sensitivity by varying n
from 100 to 1500 on our real-life logs. Furthermore, we
similarly evaluate the sensitivity to the log size by adjusting
the sampling size (|L| in Algorithm 6).

Figure [7] shows the results. We observe that for all logs,
it is necessary to take a sufficient number of samples 7, and
that the log needs to be large enough. However, the logs
can reliably be ranked even with a low n. We conclude
that sampling sizes equal to the number of traces in the
log, as suggested by the bootstrap method, seem not to be
necessary for logs of these sizes and complexities.
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Fig. 6: Sensitivity of P-NA association (y-axes) to number of Fig. 7: Sensitivity of P-CA association to its parameters.

samples (x-axes). The y-axes have been translated.

Maximum run time for a single correlation computation
ranged from less than 8 minutes (Road fines) to almost 3
hours (BPIC11).

6.2.6 C-NA association o1 | 1 ool i
The C-NA association measure has one parameter: the num- 0.05 *Mt of e =
ber of samples n. To test the sensitivity of this measure to its o | —0.05 |- |
parameter, we instantiated the measure with the alignments ~ —o.0s L \ \ B L L
conformance measure [17]. We applied the instantiated C- 0 000 10000 Am00e 0 000 10000 AR000
NA measure to our 8 logs with a numeric or time attribute, (a) Road fines (amount). (b) BPIC11 (AGE:1).
while varying the number of samples from 1000 to 10000.  —0.05 - T T 7 o[ T T =
The conformance of these logs was taken with respect to a —0.1 |- - o005 |
model discovered by the Directly Follows Model Miner [2I]  -o.15 7W| o1 7Mn
for each log, with a noise threshold of 0.5 chosen to intro- —oz2 |- 1ol |
duce some non-conformance. The results, summarised by ! ! ! !

0 5,000 10,000 15,000 0 5,000 10,000 15,000

Pearson correlation, are shown in Figure

Notice that the C-NA association measure is expen- (c) BPIC12-a (AMOUNT_REQ). (d) BPIC17 (Requested Amount).
sive, as for each sample an optimal alignment [17] needs  _o.05 |- ‘ ‘ ool ‘ ‘ .
to be computed, which may be infeasible for models Coa I B . ,W
with hundreds of activities. Results for BPIC15_1 and .| b b
BPIC15_merged could not be obtained due to this; maxi- |
mum run time ranged from 4 minutes (BPIC20) to 9 hours
(BPIC11), The C-NA association measure allows the lever-
age of other conformance measures, which may alleviate
this problem.

We conclude that the sensitivity on logs of complexity
and size comparable to used here is sufficient to rank the
logs reliably (variation is in the order of 0.02), but larger
sample sizes may be necessary for more precision.

—0.2 |- | —0.05 |-

0 5,000 10,000 15,000 0 5,000 10,000 15,000

(e) BPIC19 (net worth). (f) BPIC20-d (Amount).

Fig. 8: Sensitivity of C-NA association (y-axes) to number of
samples (x-axes). Z-axes are translated.
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6.3 Example Applications

In this section, we show several applications of the tech-
niques presented in this paper. We first highlight their
properties in a controlled setting, after which we discuss
an example application of tests, followed by an example
application of association measures.

6.3.1

First, we illustrate the sensitivity of our association mea-
sure to two event logs: (1) an event log of 100000 traces
derived from a model [(a; ... az,byi1, ... b1oo) M | & ~
U(0,100)]; and (2) an event log of 100000 traces derived
from a model that expresses for a given annotated z, trace
(a) has a probability of x to be included, and trace (b) has a
<a>value:m ifp<uz
(byvaluew  otherwise
x ~ U0,1) Ap ~ U(0,1)]. To these logs, our P-NA
association measure was applied.

The results are shown in Figure [0} by means of associ-
ation density plots: the horizontal axis is the difference in
value (z), and the vertical axis is the difference in Leven-
shtein distance. Each sample is a dot, and where more dots
overlap, the colour of the plot ranges from purple to yellow,
as indicated in the sample density legend.

For the first event log, Figure [9a| shows a straight line,
indicating a correlation of 1, which was to be expected from
the model: for a higher difference in z, there is a correspond-
ing higher difference in Levenshtein, as the higher the z, the
more bs get replaced by as. The colouring of the association
density plot shows that the sampling favoured closer traces.

For the second event log, Figure@]shows two horizontal
lines, one at 0 and one at 1, yielding a low correlation.
This shows a limitation of the technique: the test uses trace
distance (i.e. Levenshtein) and in this toy example, the
difference between two traces is either 0 or 1. A measure
using a process distance (e.g. EMSC) rather than a trace
distance (e.g. Levenshtein) might give a smoother and more
useful visualisation, at the cost of more computations.

Controlled Experiments

probability of 1 — x to be included: |

6.3.2 Comparing Executions of the Same Process

In [5], a case study was described in which participants from
5 municipalities discussed several differences in process,
with the aim of finding commonalities for process standard-
isation. We replicate this setting using a log derived from an
Italian road traffic fine management process. Similar to [5],
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one could imagine that a workshop is organised for process
participants to attempt to standardise processes. There are
26 dismissal codes in this log, and we are interested if there
is any difference in the process followed for each dismissal
code. In this section, we perform an analysis that can be
performed before stakeholders get involved, by establishing
which dismissal reasons coincide with the most similar
processes, which can be used to focus workshop efforts.
Hypothesis: All dismissals follow the same underlying (un-
known) process.

To test this hypothesis, we apply the L-CA test (Sec-
tion [£.3) with n = 10000 repetitions. The test rejects the
hypothesis (p = 0.0, a = 0.05), thus we conclude that
not all sub-logs were derived from the same process. Next,
we perform a follow-up test to reveal which processes are
different from one another.

Hypothesis: Each pair of dismissals was derived from the same
underlying (unknown) process.

To test this hypothesis, we perform a series of P-P-UP
tests (Section [£.I), each comparing a pair of dismissals’
logs. As we are performing 325 tests, there is an increased
risk of false positives [23]. To correct for this, we apply
the Benjamini-Hochberg method [18], which sorts the p-
values in reverse order, and rejects the hypotheses up to
the last p-value for which it holds that 1 — p < ar/z,
where r is the rank of the p-value and x is the number of
tests (here: 325). We reject the hypothesis for all pairs of
municipalities, except for 14 pairs, ranging from p = 0.9495
to p = 0.7863. The non-rejected pairs, for which there is
not enough evidence to conclude that their processes are
different, form interesting patterns. For instance, the pair of
dismissal of category “D” and category “C” is not rejected,
“C” and “Z” is not rejected, but “D” and “Z” is rejected.
Thus, the approximate equality of processes is, sensibly, not
transitive.

In a workshop setting, it would be infeasible to con-
sider all 325 pairs of 26 processes to find pairs that could,
for instance, share a single information system and thus
save on development effort. Where existing process-based
techniques (e.g. EMSC [20]) could be used to compare the
stochastic behaviour of the pairs and pairs could be ranked
accordingly, there would be no guidance on which and how
many pairs to consider: an arbitrary cut-off threshold would
need to be chosen. Furthermore, using the tests introduced
in this paper, as shown, existing statistical methods can be
leveraged to avoid standard statistical pitfalls.

6.3.3 Applying Association Measures

To illustrate the association measures, in this section we
apply them to several publicly available real-life event logs.

For instance, Figure shows the recorded tuples for
a log of a road fine collection process. The horizontal axis
shows the difference in the amount of the fine, while the
vertical axis shows the difference in process (§). From the
correlation measure and Figure [I0a} it is clear that the
road fines collection process is not associated with the fine
amount: the correlation is very low and for similar fine
amounts large differences in process exist. The plot has
several horizontal lines, which indicates that the number
of trace variants is low (231). Similarly, Figures[I0dand
and their measure of 0.04 shows a weak association.



A strong association can be seen in the BPIC15_1 log and
the merged BPIC15 log: the measure of 0.557 indicates an as-
sociation between the starting date of the process instances
and the process, while the plots (figures and show
a similar clear pattern of a changing process: we have found
that this log contains process drift. Note that these logs
challenges current process mining techniques: (1) as the log
contains 500 activities, process models are incomprehensible
for analysts; and (2) due to the large number of unique
patient-pathways [5541 on a total of 5649 traces] and the
high number of events per trace [average 46, maximum
154], its state space is very large. Thus, the information
provided by the correlation plot might provide a quick
starting point to filter the event log to ease further analysis:
the correlation measure takes less than 30 seconds for all
samples combined, as the Levenshtein distance is quadratic
in the length of the traces. Consequently, these filtered logs
contain less process-based variability and thus might be
easier to study using existing process mining methods.

For the log-attribute combinations with a low correla-
tion, it can be concluded that the followed process does not
associate with the used attribute. For instance, the amount
requested in BPIC12-a and BPIC17 seems to not have any
relation with the followed process. Such insights may steer
ongoing analysis efforts: it makes little sense to split the log
based on these variables. Furthermore, showing the absence
of differences in process based on gender, postal code or
nationality may also be of value for organisations. Existing
process mining techniques (e.g. [6]) would be able to rank
attributes based on process distance, but would not provide
statistically grounded quantifications of these differences.

6.4 Discussion

With the introduction of statistically sound measures and
tests, the sampling method becomes important. In process
mining projects, typically all cases starting and ending in
a particular time interval are extracted from an information
system and used as the event log. In the best case, this can be
considered a complete sample of the actual behaviour that
happened. However, it is not a complete sample of all poten-
tial behaviour of the underlying process. Other factors that
may influence the sample quality are data quality repairs
and data cleaning efforts. We acknowledge existing prelimi-
nary work on sampling in the process mining field [24], [25],
[26], but leave a detailed discussion of sampling quality for
future work.

Next, we discuss the particulars of the tests and associa-
tion measures introduced in this paper.

6.4.1 Tests

In the previous section, we have shown that the association
measures are sensitive to the resample size s. That is, s must
be chosen carefully: if chosen too low, the tested behaviour
is not captured well, while if chosen too large, the answer
tends to determinism. Thus, it might be possible to select
a resample size s that will lead to a desired answer to a
statistical test. This should be avoided, and it is important to
choose a reasonable resample size beforehand, just as with
the statistical threshold c.

A limitation of the statistical tests is that they are not
sensitive to the number of traces in the log (the resample

13

0.2 0.4 0.6 0.8 1

0O 0.2 0.4 0.6 0.8 10

(a) Road fines (b) BPIC11
amount AGE:1
correlation 0.065.  correlation 0.040.

0.2 0.4 0.6 0.8 1 0

(c) BPIC12-a
AMOUNT_REQ
correlation 0.044.

0O 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

(d) BPIC15_merged (e) BPIC15_1
startDate endDate
correlation 0.557.  correlation 0.602.

0.2 0.4 0.6 0.8 1 0

(f) BPIC17
Requested Amount
correlation 0.034.

0O 0.2 0.4 0.6 0.8 10

(g) BPIC19 (h) BPIC20
net worth Amount
correlation 0.050.  correlation 0.053.

0.2 0.4 0.6 0.8 1

1 sample density highest

Fig. 10: P-NA association plots of real-life logs (n =
1000000). x-axes: difference in trace; y-axes: difference in
attribute.

size). Intuitively, we can be more sure using a log of 10°
traces than on a log with 102 traces, but this is not reflected
in any of the tests introduced in this paper.

The run-time of most statistical tests is determined by
the expensive process-distance computation (A); only the L-
CA test depends on the cheaper trace-trace comparison (9).
For larger samples (s), this might become infeasible, though
for the experiments reported in this paper, the test ran in 8
hours or less for s = 1000 000 000.

6.4.2 Association Measures

In the previous section, we have shown that the association
measures are not very sensitive to the number of samples
n: getting enough samples (n) suffices to obtain a reliable
answer, and more samples are better.

Association measures are not sensitive to the number of
traces in the event log, which we argue is desirable.

The run time of the association measures is low: in our
experiments, at most 3 seconds were spent on any measure,
as all are based on the quick trace distance measure ¢.

For numerical attributes, we argue that while the mea-
sure of association is useful for comparison, the plots are
much more informative, as they show a much more detailed
view of the relationship between process behaviour and



attribute value. Nevertheless, it still holds that association
does not necessarily imply causation.

7 RELATED WORK

Recently, the process mining community intensified re-
search of methods for identifying the significance, hence
reproducibility, of inferred insights about the analysed pro-
cesses. It was observed that existing process discovery tech-
niques often do not guarantee that better quality input event
logs result in better discovered models [24], [1]. Conse-
quently, it was suggested that process discovery techniques
should be accompanied by formal proofs or empirically
established statistical results that justify the quality of pro-
duced models. Alkhammash et al. [27] used bootstrapping
approach to quantify the risks of making wrong conclusions
about process models automatically discovered from event
logs. The statistical tests presented in this paper support
the development of process mining techniques capable of
reproducing their results.

Business process comparison and process variant anal-
ysis [28] study commonalities and discrepancies between
processes and support the reuse and standardisation of
processes. Such analysis is more reliable if grounded in
statistically significant differences between the processes.
The existence or absence of such differences can be justified
using tests presented in this article.

It is possible to improve the efficiency of process dis-
covery by constructing models from a subset of (a sample),
rather than from the entire, event log. Several works confirm
that different strategies for choosing the sample may speed
up the construction and improve the quality of the discov-
ered process models [25], [29]. A separate line of research
studies ways to use statistics to estimate the completeness
of event logs [30], [31]. If the log completeness is established,
it can be related to the quality of the process mining results.
Some of these methods for establishing the log completeness
use sampling methods, which can be explored to instantiate
our statistical tests.

Several works in process mining explore relationships
between processes and their attributes or outcomes. For
instance, [6] provides the trace attributes that characterise
the highest distance in the processes; [32] can be used to
discover collections of traces for which a controlled inter-
vention has a high causal effect on the outcome of the
process; in [33], statistical tests for identifying effects of
different treatment sequences of patients were studied (the
identification of different patient cohorts was supported by
process mining techniques, while the difference in effects for
the cohorts was identified using statistical tests over trace
attributes, and not over the process behaviour); and [34]
studies ways to identify statistically significant differences
in the control-flow and activity duration of business pro-
cess variants. The techniques presented in this paper could
provide a statistical foundation to the aforementioned tech-
niques, e.g. our association measures can be used to identify
relationships between the ways patients were treated vs. the
attributes of patients or treatment outcomes.

Existing works differ from the methods introduced
in this paper as we allow quantifying uncertainty when
analysing process data; providing a means to assess statisti-
cal significance and draw inference on processes.
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8 CONCLUSION

In many fields of research, the use of statistical tests and
association measures is omnipresent. However, in process
mining, not a single method giving a statistical quantifica-
tion of uncertainty has been proposed, that is, a method
to establish statistical significance over process behaviour.
In this paper, we formulated requirements for such meth-
ods, and introduced several statistical tests to compare (i)
2 processes or (ii) multiple processes, with either (a) an
unknown process or (b) a known process. Furthermore, we
introduced measures expressing the association between (i)
a log or (ii) the conformance of a log to a model, with either
(a) a categorical or (b) a numerical trace attribute. We have
evaluated the sensitivity of the introduced methods to their
parameters, and illustrated how they could be applied in
practice.

An interesting area of future work is to establish the
association of process and start time of traces as a means
of concept drift detection. Cohort analysis studies the in-
fluence of the combination of trace variables on process
behaviour [6]; it would be interesting to provide cohort
analysis with a statistical foundation using the methods
introduced in this paper. Finally, all techniques described
in this paper do not consider concurrency, even though it
could be argued that concurrency simplifies the stochastic
perspective: if we know that ¢ and b are concurrent in
two traces (a, b) and (b, a), then these traces are equal and
there is no need for a stochastic perspective to distinguish
them. The study of the impact of concurrency on statistical
methods is a subject of future work.
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